2 research outputs found

    A PRISMA-driven systematic mapping study on system assurance weakeners

    Full text link
    Context: An assurance case is a structured hierarchy of claims aiming at demonstrating that a given mission-critical system supports specific requirements (e.g., safety, security, privacy). The presence of assurance weakeners (i.e., assurance deficits, logical fallacies) in assurance cases reflects insufficient evidence, knowledge, or gaps in reasoning. These weakeners can undermine confidence in assurance arguments, potentially hindering the verification of mission-critical system capabilities. Objectives: As a stepping stone for future research on assurance weakeners, we aim to initiate the first comprehensive systematic mapping study on this subject. Methods: We followed the well-established PRISMA 2020 and SEGRESS guidelines to conduct our systematic mapping study. We searched for primary studies in five digital libraries and focused on the 2012-2023 publication year range. Our selection criteria focused on studies addressing assurance weakeners at the modeling level, resulting in the inclusion of 39 primary studies in our systematic review. Results: Our systematic mapping study reports a taxonomy (map) that provides a uniform categorization of assurance weakeners and approaches proposed to manage them at the modeling level. Conclusion: Our study findings suggest that the SACM (Structured Assurance Case Metamodel) -- a standard specified by the OMG (Object Management Group) -- may be the best specification to capture structured arguments and reason about their potential assurance weakeners

    The Last Decade in Review: Tracing the Evolution of Safety Assurance Cases through a Comprehensive Bibliometric Analysis

    Full text link
    Safety assurance is of paramount importance across various domains, including automotive, aerospace, and nuclear energy, where the reliability and acceptability of mission-critical systems are imperative. This assurance is effectively realized through the utilization of Safety Assurance Cases. The use of safety assurance cases allows for verifying the correctness of the created systems capabilities, preventing system failure. The latter may result in loss of life, severe injuries, large-scale environmental damage, property destruction, and major economic loss. Still, the emergence of complex technologies such as cyber-physical systems (CPSs), characterized by their heterogeneity, autonomy, machine learning capabilities, and the uncertainty of their operational environments poses significant challenges for safety assurance activities. Several papers have tried to propose solutions to tackle these challenges, but to the best of our knowledge, no secondary study investigates the trends, patterns, and relationships characterizing the safety case scientific literature. This makes it difficult to have a holistic view of the safety case landscape and to identify the most promising future research directions. In this paper, we, therefore, rely on state-of-the-art bibliometric tools(e.g., VosViewer) to conduct a bibliometric analysis that allows us to generate valuable insights, identify key authors and venues, and gain a birds eye view of the current state of research in the safety assurance area. By revealing knowledge gaps and highlighting potential avenues for future research, our analysis provides an essential foundation for researchers, corporate safety analysts, and regulators seeking to embrace or enhance safety practices that align with their specific needs and objectives
    corecore